
Implementation of the Deutsch-Jozsa
algorithm in qSOA®

© QuantumPath® 2022 | All rights reserved

https://www.quantumpath.es/

Contents

1 The Deutsch-Jozsa algorithm 2
1.1 The problem . 2
1.2 Classical solution . 2
1.3 Quantum solution . 2
1.4 Usefulness of the algorithm . 4

2 Implementation of the algorithm in qSOA® 4
2.1 Setting up qSOA® . 5

2.1.1 Securing the connection . 5
2.2 Assigning a circuit to the solution . 5

2.2.1 Defining the circuit . 5
2.2.2 Creating the circuit . 6

2.3 Assigning a circuit flow to the circuit . 7
2.3.1 Defining the flow . 7
2.3.2 Creating the flow . 8

2.4 Implementation of the algorithm . 9
2.4.1 Executing the algorithm . 9
2.4.2 Multiple devices . 10

© QuantumPath® 2022 | All rights reserved 1

https://www.quantumpath.es/

1 The Deutsch-Jozsa algorithm

1.1 The problem
The Deutsch - Jozsa algorithm was the first example of a quantum algorithm that performed better
than any classical algorithm, showing the world the clear advantages of using a quantum machine
as a computational tool for a specific problem.

Let an unknown Boolean function be such that f : {0, 1}n → {0, 1}, with the assurance to be
constant (f (x) = a, ∀x ∈ {0, 1}n, and for some a ∈ (0, 1)), or balanced (the function returns 0 for
half of the values and returns 1 for the other half). Then, the task of the algorithm is to determine
whether the function is balanced or constant.

1.2 Classical solution
Classically, in the best case, two queries to the oracle can determine if the hidden boolean function,
f (x), is balanced: e.g., if we get both f (0, 0, 0, . . .) → 0 and f (1, 0, 0, . . .) → 1, then we know the
function is balanced, as we have obtained the two different outputs.

In the worst case, if we continue to see the same output for each input that we try, we will have to
check exactly half of all the possible inputs plus one to be sure of f (x) being constant. As the total
number of possible inputs is 2n, this implies that we need 2n−1 + 1 trial inputs to be certain that
f (x) is constant in the worst case.

For example, for a 4−bit string, if we check 8 out of the 16 possible combinations, getting all 0’s, it
is still possible that the 9th input returns a 1 and f (x) is balanced. Probabilistically, this is a very
unlikely event. In fact, if we get the same as a continuum, we can express the probability of the
function being constant as a function of k inputs as:

Pconstant(k) = 1 − 1
2k−1 f or 1 < k ≤ 2n−1

Realistically, we could opt to truncate our classical algorithm early, for example, if we were over
x% confident. But if we want to be 100% confident, we will need to check 2n−1 inputs.

1.3 Quantum solution
To apply Deutsch-Jozsa’s algorithm to a function f : {0, 1}n → {0, 1}, we need to have imple-
mented it as an oracle, i.e., as a black box, U f , with U f such that

|x⟩ |y⟩ → |x⟩ | f (x)⊕ y⟩

We take as input of the circuit a first register of n qubits initialized in |0⟩⊗n and a second auxiliary
register of a single qubit initialized in |1⟩. We apply Hadamard gates on both registers, and make
a call to the oracle. Then, we apply Hadamard gates on the first register and measure it, as we can
see in Figure 1.

© QuantumPath® 2022 | All rights reserved 2

https://www.quantumpath.es/

Figure 1: The Deutsch-Jozsa algorithm

So, before the measurement, ignoring the second register, the state of our circuit is:

|Ψ⟩ = 1
2n

2n−1

∑
y=0

[
2n−1

∑
x=0

(−1) f (x)(−1)x

]
|y⟩ (1)

where the probability of measuring |0⟩⊗n is:∣∣∣∣∣ 1
2n

2n−1

∑
x=0

(−1) f (x)

∣∣∣∣∣
2

so that it is 0 if f is constant, and 1 if f is balanced. That is, our function is constant if and only if
the returned measurement is |0⟩⊗n.

In this tutorial we will execute the following function, and figure out whether it is balanced or
constant.

f : (x1, x2, ...x8) → x1 ⊕ x2 ⊕ x1x2 ⊕ x3 ⊕ x1x3 ⊕ x1x2x3 ⊕ x̄1 x̄2 x̄3 = 1

for every (x1, x2, ...x8) ∈ {0, 1}8 where, given x ∈ {0, 1}, x̄ is the complementary, i.e. x̄ = 1 ⊕ x,
∀x ∈ {0, 1}.

It is easy to see that we are working with a constant function. Therefore, given what has been
explained before, the expected result for this tutorial is the zero state, |0⟩⊗n.

© QuantumPath® 2022 | All rights reserved 3

https://www.quantumpath.es/

Figure 2: Deutsch-Jozsa algorithm in QPath®

1.4 Usefulness of the algorithm
This algorithm was the first in which a large difference in complexity was observed with respect
to its classical version. To solve the problem classically, it is necessary to evaluate, in the worst
case, N/2 + 1 times the function, with N = 2n being the size of the input domain, so its time
complexity is O(N/2+1). Quantumly, however, one can solve the problem with 100% confidence
with a single call to the oracle (our unknown function), so its time complexity is reduced to O(1).

2 Implementation of the algorithm in qSOA®

Once we are aware of how the algorithm works, we are ready to implement it in qSOA®. This will
allow us to create the circuit and execute it in different quantum computing providers, among
many other things.

The process of implementing an algorithm in qSOA® is comprised of four steps:

1. Setting up qSOA® and selecting the quantum solution

2. Creating a circuit with the algorithm and assigning it to the solution

3. Introducing a circuit flow to control the number of launches of the algorithm

4. Executing the flow on different quantum devices.

As can be seen in qSOA’s® manual, ref.[1], there are multiple ways to secure the connection de-
pending on the context. Following the best practices of qSOA®, in this tutorial we are integrating
the security in the code. Similarly, one can work with asynchronous or synchronous program-
ming. Keeping in mind the purpose of this tutorial we will use the synchronous version.

© QuantumPath® 2022 | All rights reserved 4

https://www.quantumpath.es/

2.1 Setting up qSOA®

Firstly, we import the SDK that has been previously installed, see ref.[1], and create the qSOA®

workspace to work with.

[1]: from QuantumPathQSOAPySDK import QSOAPlatform # Import SDK

[2]: # Create qSOA workspace, login manually
qsoa = QSOAPlatform()

username = 'username'
password = 'password' # password encrypted in SHA-256

authenticated = qsoa.authenticateEx(username, password)

print('Authentication completed:', authenticated)

Authentication completed: True

Then we review the existing solutions and select the one we are interested in.

[3]: # Get catalogs
solutionList = qsoa.getQuantumSolutionList()
print(" ",solutionList)
idSolution = int(input("Select idSolution: "))

{'12345': 'QS_GateTutorials'}
Select idSolution: 12345

2.1.1 Securing the connection

As has been said, qSOA® allows multiple business development contexts. Therefore, the user
can secure the connection through a configuration file, .qpath, useful at a personal level, or in
parameterized way, as it is done here.

2.2 Assigning a circuit to the solution
Once the solution has been selected, we must link it to the circuit that we are interested in imple-
menting. Therefore, we first need to define the circuit and create it.

2.2.1 Defining the circuit

As we are working with a gates circuit, we can either enter the circuit in visual language, VL, or
intermediate language, IL. In this case we are going to work with VL and, therefore, we can either
enter the circuit as a String or as a CircuitGates object, which is what we are going to go for.

In order to define the circuit shown in figure 2, we just need to write the gates we want to use in
the correspondent qubits.

© QuantumPath® 2022 | All rights reserved 5

https://www.quantumpath.es/

[4]: ## Defining circuit w/ Circuit Gates
circuitG = qsoa.CircuitGates()
n = 9 # Number of qubits
circuitG.x(n-1)
circuitG.h(list(range(n)))
for i in range(3):

circuitG.cx(i,n-1)
circuitG.mcg([0, 1], circuitG.x(n-1, False))
circuitG.mcg([0, 2], circuitG.x(n-1, False))
circuitG.mcg([2, 1], circuitG.x(n-1, False))
for i in range(2):

circuitG.mcg([0, 1, 2], circuitG.x(n-1, False))
circuitG.x([0, 1, 2])

circuitG.h()
circuitG.measure()

print(circuitG.getCircuitBody())

[['H', 'H', 'H', 'H', 'H', 'H', 'H', 'H', 'X'], ['1', '1', '1', '1', '1', '1', '1',
'1', 'H'], ['CTRL', 1, 1, 1, 1, 1, 1, 1,'X'], [1, 'CTRL', 1, 1, 1, 1, 1, 1, 'X'],
[1, 1, 'CTRL', 1, 1, 1, 1, 1, 'X'], ['CTRL', 'CTRL', 1, 1, 1, 1, 1, 1, 'X'],
['CTRL', 1, 'CTRL', 1, 1, 1, 1, 1, 'X'], [1, 'CTRL', 'CTRL', 1, 1, 1, 1, 1, 'X'],
['CTRL', 'CTRL', 'CTRL', 1, 1, 1, 1, 1, 'X'], ['X', 'X', 'X'], ['CTRL', 'CTRL',
'CTRL', 1, 1, 1, 1, 1, 'X'], ['X', 'X', 'X', 'H', 'H', 'H', 'H', 'H', 'H'], ['H',
'H', 'H'], ['Measure'], [1, 'Measure'], [1, 1, 'Measure'], [1, 1, 1, 'Measure'],
[1, 1, 1, 1, 'Measure'], [1, 1, 1, 1, 1, 'Measure'], [1, 1, 1, 1, 1, 1,
'Measure'], [1, 1, 1, 1, 1, 1, 1, 'Measure'], [1, 1, 1, 1, 1, 1, 1, 1, 'Measure']]

Note: Every gate can be applied to a single qubit, a list of them, introduced as a list, or to every
qubit in the circuit, using ().

2.2.2 Creating the circuit

In order to create the circuit we are going to use the createAssetSync function. This function receives
the following fields as inputs:

• idSolution: to associate the circuit with the solution we have selected before.

• assetName: to set the name of the circuit.

• assetNamespace: to associate the circuit with a class of circuits that share something in com-
mon. In this case, we associate the circuit with a set of basic circuits.

• assetDescription: to write a brief description of the algorithm.

• assetBody: to select the circuit we have previously defined.

• assetType: to select if we are working with a gates circuit or an annealing one.

© QuantumPath® 2022 | All rights reserved 6

https://www.quantumpath.es/

• assetLevel: to select either visual language or intermediate language, according to the defi-
nition of the circuit.

[5]: ## Circuit creation
assetName = 'QC_qSOA_DJ'
assetNamespace = 'Manual.Gates.DJ'
assetDescription = 'Creating the DJ circuit from qSOA'

assetBody = circuitG
assetType = 'GATES'
assetLevel = 'VL'

CircuitManagementResult = qsoa.createAssetSync(idSolution, assetName,
assetNamespace, assetDescription, assetBody, assetType, assetLevel)

Note: Note that the synchronous version of this function is being used. This is because the create-
Asset function creates, compiles and transpiles the asset, and the synchronous function waits for
all of it to be done before moving on. For a better understanding of how this functions works,
we recommend using the asynchronous version, createAsset, and the getAssetManagementResult
function.

2.3 Assigning a circuit flow to the circuit
The quantum flow is a box diagram that will allow us to control the number of runs of our algo-
rithm. This is very useful, as the results obtained in quantum computing have a certain probability
associated with them. That means that the more times we run the algorithm, the more robust the
results will be.

2.3.1 Defining the flow

As happens with the circuit, the flow can be written in VL or IL. If we choose to do it with VL then
it can be entered as a String or a CircuitFlow object. Otherwise, it can only be entered as a String.
For this example we are choosing VL and CircuitFlow.

In order to define a flow we need:

1. Starting node

2. Initializing node: usually set to 0

3. Circuit node: where we write the circuit we want lo launch

4. Repeat node: where the number of repetitions can be establish

5. End node

6. Links between each node we have created

© QuantumPath® 2022 | All rights reserved 7

https://www.quantumpath.es/

[8]: # Defining flow w/ CircuitFlow
flow = qsoa.CircuitFlow()
startNode = flow.startNode()
initNode = flow.initNode(0)
circuitNode = flow.circuitNode('Manual.Gates.DJ.QC_qSOA_DJ')
Namespace + CircuitName
repeatNode = flow.repeatNode(1000)
endNode = flow.endNode()

flow.linkNodes(startNode, initNode)
flow.linkNodes(initNode, circuitNode)
flow.linkNodes(circuitNode, repeatNode)
flow.linkNodes(repeatNode, endNode)
print(flow.getFlowBody())

[8]: {'class': 'go.GraphLinksModel', 'nodeDataArray': [{'category': 'Start', 'text':
'Start', 'key': -1, 'loc': ''}, {'category': 'Init', 'text': '0', 'key': -2,
'loc': ''},{'category': 'Circuit', 'text': 'Manual.Gates.DJ.QC_qSOA_DJ', 'key':␣

↪→-3, 'loc': ''}, {'category': 'Repeat', 'text':
'1000', 'key': -4, 'loc': ''}, {'category': 'End', 'text': 'End', 'key': -5,
'loc': ''}], 'linkDataArray': [{'from': -1, 'to': -2, 'points': []}, {'from':
-2, 'to': -3, 'points': []}, {'from': -3, 'to': -4, 'points': []}, {'from': -4,
'to': -5, 'points': []}]}

2.3.2 Creating the flow

In order to create the flow we are using createAssetFlowSync, although the createAssetSync function
would also work. The inputs that this function requires are:

• idSolution: to associate the flow with the solution we have selected before.

• assetName: to set the name of the flow.

• assetNamespace: to associate the flow with a class of flows that share something in common.
In this case, we associate the flow with a set of basic flows.

• assetDescription: to write a brief description of the algorithm.

• assetBody: to select the flow we have previously defined.

• assetLevel: to select either VL or IL, according to the definition of the flow.

• publish: to select if we want to publish the flow on qSOA or not.

[9]: ## Flow creation
assetName = 'QF_qSOA_DJ'
assetNamespace = 'Manual.Gates.DJ'
assetDescription = 'Creating the DJ flow from qSOA'
assetPublication = True

© QuantumPath® 2022 | All rights reserved 8

https://www.quantumpath.es/

assetBody = flow
assetType = 'FLOW'
assetLevel = 'VL'

FlowManagementResult = qsoa.createAssetFlowSync(idSolution, assetName,
assetNamespace, assetDescription, assetBody, assetLevel,assetPublication)

Note: Note that the synchronous version of this function is being used. This is because the create-
AssetFlow function creates, compiles and transpiles the flow, and the synchronous function waits
for all of it to be done before moving on. For a better understanding of how this functions works,
we recommend using the asynchronous version, createAssetFlow, and the getAssetManagementRe-
sult function.

2.4 Implementation of the algorithm
Note: If you would like to execute any other previously created flow, you can do so by imple-
menting this part of the tutorial. You will need to specify the ID Solution and the ID of the flow.

2.4.1 Executing the algorithm

We are now ready to execute the algorithm, so lets see on what platforms we can do so, and select
the ones we are interested in.

[12]: deviceList = qsoa.getQuantumDeviceList(idSolution)
print('Device List:', deviceList)
DeviceID = input("Select a device to run the flow in: ")

Device List: {'14': 'AMAZON BRAKET 25qbits Local Simulator', '2': 'QISKIT Local
Simulator', '1': 'Q# Local Simulator Framework'}
Select a device to run the flow in: 14

Now, we proceed to run the quantum algorithm with the runQuantumApplicationSync function.

[13]: exe_application = qsoa.runQuantumApplicationSync('NameTheTask', idSolution,␣
↪→FlowID, DeviceID)

Note: Note that the synchronous version of this function is being used. This is because runQuan-
tumApplication launches an execution, and the synchronous function waits for the execution to
be done before moving on. If we do not know how long the execution is going to take (due to
execution itself or to the queue), or if it takes too long, the asynchronous version presents a clear
advantage. However, for a better understanding of how this functions work, we recommend us-
ing the asynchronous version, runQuantumApplication.

The function runQuantumApplicationSync gives an application object as output. For us to man-
age the results we need the getQuantumExecutionResponse function that returns the results as an

© QuantumPath® 2022 | All rights reserved 9

https://www.quantumpath.es/

execution object.

[14]: restok_execution = qsoa.getQuantumExecutionResponse(exe_application.
↪→getExecutionToken(), idSolution, FlowID)

restok_histogram = restok_execution.getHistogram()
print(restok_histogram)

{'QS_GateTutorials_12345_Manual_Gates_DJ_QC_qSOA_DJ_1_0': {'000000001': 1000}}

Now that we have the results we asked for, we can proceed to represent them with the function
representResults.

[15]: # Circuit gate representation
gates_representation = qsoa.representResults(restok_execution)

2.4.2 Multiple devices

If we want to run the algorithm in multiple devices at the same time, we can do so by creating an
array with the information needed and proceeding the same way as before.

[16]: deviceList = qsoa.getQuantumDeviceList(idSolution)
print('Device List:', deviceList)

Device List: {'14': 'AMAZON BRAKET 25qbits Local Simulator', '2': 'QISKIT Local
Simulator', '1': 'Q# Local Simulator Framework'}

[17]: ## Run Quantum Gates Application
exe_ApplicationNames = ['Task_Amazonsim','Task_Qiskitsim']
exe_IdDevices = [14,2]

exe_Applications = [0] * len(exe_ApplicationNames)

for i in range(len(exe_ApplicationNames)):

© QuantumPath® 2022 | All rights reserved 10

https://www.quantumpath.es/

exe_Applications[i] = qsoa.runQuantumApplicationSync(exe_ApplicationNames[i],
idSolution, FlowID, exe_IdDevices[i])

[18]: # Get quantum execution response with execution token
restok_Executions = [0] * len(exe_ApplicationNames)
restok_Histograms = [0] * len(exe_ApplicationNames)

for i in range(len(exe_ApplicationNames)):
restok_Executions[i] = qsoa.getQuantumExecutionResponse(exe_Applications[i].

↪→getExecutionToken(), idSolution, FlowID)
restok_Histograms[i] = restok_Executions[i].getHistogram()

print(restok_Histograms)

[{'QS_GateTutorials_12345_Manual_Gates_DJ_QC_qSOA_DJ_1_0': {'000000001': 1000}},
{'QS_GateTutorials_12345_Manual_Gates_DJ_QC_qSOA_DJ_1_0': {'000000001': 1000}}]

[19]: # Circuit gate representation
for i in range(len(exe_ApplicationNames)):

Gates_Representations = qsoa.representResults(restok_Executions[i])

© QuantumPath® 2022 | All rights reserved 11

https://www.quantumpath.es/

As it has been shown, the measurement obtained is |0⟩⊕n, so the function f associated with the
oracle U f in this example is a constant function, just as we expected.

References

[1] aQuantum, QPath® Python SDK User Guide. Available on QPath®.

© QuantumPath® 2022 | All rights reserved 12

https://www.quantumpath.es/

	The Deutsch-Jozsa algorithm
	The problem
	Classical solution
	Quantum solution
	Usefulness of the algorithm

	Implementation of the algorithm in qSOA®
	Setting up qSOA®
	Securing the connection

	Assigning a circuit to the solution
	Defining the circuit
	Creating the circuit

	Assigning a circuit flow to the circuit
	Defining the flow
	Creating the flow

	Implementation of the algorithm
	Executing the algorithm
	Multiple devices

