
Implementation of Simon’s algorithm in
qSOA®

© QuantumPath® 2022 | All rights reserved

https://www.quantumpath.es/

Contents

1 Simon’s algorithm 2
1.1 Previous concepts . 2
1.2 The problem . 2
1.3 Classical solution . 2
1.4 Quantum solution . 3
1.5 Usefulness of the algorithm . 5

2 Implementation of the algorithm in qSOA® 5
2.1 Setting up qSOA® . 5

2.1.1 Securing the connection . 6
2.2 Assigning a circuit to the solution . 6

2.2.1 Defining the circuit . 6
2.2.2 Creating the circuit . 7

2.3 Assigning a circuit flow to the circuit . 7
2.3.1 Defining the flow . 8
2.3.2 Creating the flow . 8

2.4 Implementation of the algorithm . 9
2.4.1 Executing the algorithm . 9
2.4.2 Multiple devices . 11

© QuantumPath® 2022 | All rights reserved 1

https://www.quantumpath.es/

1 Simon’s algorithm

1.1 Previous concepts
Let’s define some mathematical concepts that are going to be used throught the tutorial.

• XOR gate: It is a digital logic gate that gives a true output when the number of true inputs is
odd, - in other words, it produces a 0 when both inputs match. For two given inputs, A and
B, the XOR gate is represented by the expression: A ⊕ B. The XOR gate is equivalent to an
addition modulo-2. As an example, we can compute 100110 ⊕ 001101 = 101011. These are
the properties of the XOR gate:

– Commutativity: A ⊕ B = B ⊕ A

– Associativity: A ⊕ (B ⊕ C) = (A ⊕ B)⊕ C

– Identity element: A ⊕ 0 = A

– Self-inverse: A ⊕ A = 0

• One-to-one function: Maps one unique input for every output. For example:
f (1) → 1 f (2) → 2 f (3) → 3 f (4) → 4

• Two-to-one function: Maps two inputs for every output. For example:
f (1) → 1 f (2) → 2 f (3) → 1 f (4) → 2

1.2 The problem
Given an unknown black-box function, f : {0, 1}n → {0, 1}n, we know that for some unknown
numbers, s, f (x) = f (x ⊕ s). Noticing that for two binary numbers x1 ̸= x2 then x1 ⊕ s ̸= x2 ⊕ s,
so if s = 0n then f is a one-to-one function. However, if s ̸= 0n then f is a two-to-one function.
The problem consists of finding the number s making as few queries as possible.

1.3 Classical solution
One way of finding the classical solution is by giving values to the function and seeing which
outputs we obtain - the reader must remember that the function f is supposed to be unknown to
us. In this case, if the function happens to be one-to-one, then 2n−1 + 1 queries will be needed to
know that s = 0n with 100% probability. On the other hand, if the function is two-to-one, then we
may find two inputs mapped to the same input on the first two queries, and therefore, find the
number s. Or we may be unlucky and find all the different outputs on the first 2n−1 tries, needing
then 2n−1 + 1 to find the solution. We will see now how we can use quantum computing to use
fewer queries.

© QuantumPath® 2022 | All rights reserved 2

https://www.quantumpath.es/

1.4 Quantum solution
General idea and scope of the algorithm

The idea behind Simon’s algorithm relies on making a circuit such that, when we run it enough
times, we can use the results to find n − 1 linearly independent n-bit strings z1, z2, ...zn−1 ∈ {0, 1}n

such that the following equations are satisfied:

z1·s = 0
z2·s = 0

...
Zn−1·s = 0

(1)

Where the dot represents the modulo-2 product so that zi ⊕ s = zi1s1 ⊕ zi2s2 ⊕ ... ⊕ zinsn where
sj ∈ {0, 1}. We note that the system has n − 1 equations and n unknowns (the bits of s ∈ {0, 1}n),
so the final solution may not be unique. This is because the string 00...0n produces a trivial equality,
as we will see afterwards.

Simon’s algorithm

In figure 1, we can see a circuit implementing Simon’s algorithm in QPath® for the case of a two-
to-one function. We have chosen the string s = 101. Also, we can set arbitrary values to the image
of the function with the only requirement that f (x) = f (x ⊕ s).

Figure 1: Simon’s algorithm implemented in QPath® for s=101

It is important to notice that the quantum algorithm will be different depending on the chosen

© QuantumPath® 2022 | All rights reserved 3

https://www.quantumpath.es/

values for the image of f . In this case, we have chosen the following function:

f (000) = f (101) = 000
f (001) = f (100) = 100
f (010) = f (111) = 010
f (011) = f (110) = 110

(2)

The numbers in figure 1 correspond to the different steps of the algorithm, which will be explained
now:

1. We use two quantum registers, and we can see that the algorithm starts with the in-
put |0n⟩ ⊗ |0n⟩. We will follow the original formulation of the problem, which says that
f : {0, 1}n → {0, 1}n and therefore we will also need n qubits in the second register.

2. We apply Hadamard transformations to the qubits on the first register, so that the compos-
ite state becomes: |Ψ⟩ = (H⊗n |0n⟩)⊗ |0n⟩ = 1√

2n ∑x∈{0,1}n (|x⟩ ⊗ |0n⟩), where x ∈ {0, 1}n

denotes any n-bit string.

3. In this step, we will have to implement the oracle. The gates used in the oracle will depend
on the function that we want to implement. The transformation should be such that:

|Ψ⟩ = 1√
2n ∑

x∈{0,1}n

(|x⟩ ⊗ |0n⟩) → 1√
2n ∑

x∈{0,1}n

(|x⟩ ⊗ | f (x)⟩) (3)

This means that the input of the function is the result of the superposition generated by the
Hadamard gates on each qubit of the first register, and the output is stored on the second
register as a result of applying CNOT gates, having their control qubit on the first register.
This allows us to build our two-to-one function, considering the string s. For example, when
the input produced by the first Hadamard gates on the first register is the string x1 = 000,
it will produce an output f (x1) = 000 in the second register, as no control gate is being
activated.

4. Now we proceed to measure the qubits in the second register, getting some value for
f (x). This can correspond to two different inputs: x1 and x2 = x1 ⊕ s. As the value
of f (x) is irrelevant, we can just focus on the state of the first register, which becomes
|Ψ′⟩ = 1√

2
(|x1⟩+ |x2⟩).

5. After applying a Hadamard gate on the first register, the quantum state will become
|Ψ′′⟩ = 1√

2n1 ∑z∈{0,1}n [(−1)x1·z + (−1)x2·z] |z⟩.

6. When we apply a measurement to the qubits in the first register we will have an output only
if (−1)x1·z = (−1)x2·z which implies that x1 · z = x2 · z → x1 · z = (x1 ⊕ s) · z → x1 · z =
x1 · z ⊕ s · z → s · z = 0(mod2), where the transition from the second to the third state can be
shown computing a truth table. So, we will have to solve the following equation system:

z1·s = 0
z2·s = 0

...
zn·s = 0

(4)

© QuantumPath® 2022 | All rights reserved 4

https://www.quantumpath.es/

And once we have run the algorithm enough times to get independent equations, we can
get the result for the string s.

1.5 Usefulness of the algorithm
Given that the secret string needs to be known to build the circuit, it is clear to see that this algo-
rithm does not have any real-world version. However, the fact that it can solve a problem for any
vector size in a single query shows us the potential of quantum computing and the exponential
speed-up that it could bring to some tasks.

2 Implementation of the algorithm in qSOA®

Once we are aware of how the algorithm works, we are ready to implement it in qSOA®. This will
allow us to create the circuit and execute it in different quantum computing providers, among
many other things.

The process of implementing an algorithm in qSOA® is comprised of four steps:

1. Setting up qSOA® and selecting the quantum solution

2. Creating a circuit with the algorithm and assigning it to the solution

3. Introducing a circuit flow to control the number of launches of the algorithm

4. Executing the flow on different quantum devices.

As can be seen in qSOA’s® manual, ref.[1], there are multiple ways to secure the connection de-
pending on the context. Following the best practices of qSOA®, in this tutorial we are integrating
the security in the code. Similarly, one can work with asynchronous or synchronous program-
ming. Keeping in mind the purpose of this tutorial we will use the synchronous version.

2.1 Setting up qSOA®

Firstly, we import the SDK that has been previously installed, see ref.[1], and create the qSOA®

workspace to work with.

[1]: from QuantumPathQSOAPySDK import QSOAPlatform # Import SDK

[2]: # Create qSOA workspace, login manually
qsoa = QSOAPlatform()

username = 'username'
password = 'password' # password encrypted in SHA-256

authenticated = qsoa.authenticateEx(username, password)

print('Authentication completed:', authenticated)

© QuantumPath® 2022 | All rights reserved 5

https://www.quantumpath.es/

Authentication completed: True

Then we review the existing solutions and select the one we are interested in.

[3]: # Get catalogs
solutionList = qsoa.getQuantumSolutionList()
print(" ",solutionList)
idSolution = int(input("Select idSolution: "))

{'12345': 'QS_GateTutorials'}
Select idSolution: 12345

2.1.1 Securing the connection

As has been said, qSOA® allows multiple business development contexts. Therefore, the user
can secure the connection through a configuration file, .qpath, useful at a personal level, or in
parameterized way, as it is done here.

2.2 Assigning a circuit to the solution
Once the solution has been selected, we must link it to the circuit that we are interested in imple-
menting. Therefore, we first need to define the circuit and create it.

2.2.1 Defining the circuit

As we are working with a gates circuit, we can either enter the circuit in visual language, VL, or
intermediate language, IL. In this case we are going to work with VL and, therefore, we can either
enter the circuit as a String or as a CircuitGates object, which is what we are going to go for.

In order to define the circuit shown in figure 1, we just need to write the gates we want to use, in
the correspondent qubits.

[4]: ## Defining circuit w/ Circuit Gates
circuitG = qsoa.CircuitGates()
circuitG.h(list(range(3)))
circuitG.cx(0,3)
circuitG.cx(1,4)
circuitG.cx(2,3)
circuitG.h(list(range(3)))
circuitG.measure(list(range(6)))

print(circuitG.getCircuitBody())

[['H', 'H', 'H'], ['CTRL', 1, 1, 'X'], [1, 'CTRL', 1, 1, 'X'], [1, 1,
'CTRL', 'X'], ['H', 'H', 'H'], ['Measure'], [1, 'Measure'], [1, 1,
'Measure'], [1, 1, 1, 'Measure'], [1, 1, 1, 1, 'Measure'], [1, 1, 1, 1, 1,
'Measure']]

© QuantumPath® 2022 | All rights reserved 6

https://www.quantumpath.es/

Note: Every gate can be applied to a single qubit, a list of them, introduced as a list, or to every
qubit in the circuit, using ().

2.2.2 Creating the circuit

In order to create the circuit we are going to use the createAssetSync function. This function receives
the following fields as inputs:

• idSolution: to associate the circuit with the solution we have selected before.

• assetName: to set the name of the circuit.

• assetNamespace: to associate the circuit with a class of circuits that share something in com-
mon. In this case, we associate the circuit with a set of basic circuits.

• assetDescription: to write a brief description of the algorithm.

• assetBody: to select the circuit we have previously defined.

• assetType: to select if we are working with a gates circuit or an annealing one.

• assetLevel: to select either visual language or intermediate language, according to the defi-
nition of the circuit.

[5]: ## Circuit creation
assetName = 'QC_qSOA_Simon'
assetNamespace = 'Manual.Gates.Simon'
assetDescription = 'Creating Simons circuit from qSOA'

assetBody = circuitG
assetType = 'GATES'
assetLevel = 'VL'

CircuitManagementResult = qsoa.createAssetSync(idSolution, assetName,
assetNamespace, assetDescription, assetBody, assetType, assetLevel)

Note: Note that the synchronous version of this function is being used. This is because the create-
Asset function creates, compiles and transpiles the asset, and the synchronous function waits for
all of it to be done before moving on. For a better understanding of how this functions works,
we recommend using the asynchronous version, createAsset, and the getAssetManagementResult
function.

2.3 Assigning a circuit flow to the circuit
The quantum flow is a box diagram that will allow us to control the number of runs of our algo-
rithm. This is very useful, as the results obtained in quantum computing have a certain probability
associated with them. That means that the more times we run the algorithm, the more robust the
results will be.

© QuantumPath® 2022 | All rights reserved 7

https://www.quantumpath.es/

2.3.1 Defining the flow

As happens with the circuit, the flow can be written in VL or IL. If we choose to do it with VL then
it can be entered as a String or a CircuitFlow object. Otherwise, it can only be entered as a String.
For this example we are choosing VL and CircuitFlow.

In order to define a flow we need:

1. Starting node

2. Initializing node: usually set to 0

3. Circuit node: where we write the circuit we want lo launch

4. Repeat node: where the number of repetitions can be establish

5. End node

6. Links between each node we have created

[6]: # Defining flow w/ CircuitFlow
flow = qsoa.CircuitFlow()
startNode = flow.startNode()
initNode = flow.initNode(0)
circuitNode = flow.circuitNode('Manual.Gates.Simon.QC_qSOA_Simon')
Namespace + CircuitName
repeatNode = flow.repeatNode(1000)
endNode = flow.endNode()

flow.linkNodes(startNode, initNode)
flow.linkNodes(initNode, circuitNode)
flow.linkNodes(circuitNode, repeatNode)
flow.linkNodes(repeatNode, endNode)
print(flow.getFlowBody())

[6]: {'class': 'go.GraphLinksModel', 'nodeDataArray': [{'category': 'Start', 'text':
'Start', 'key': -1, 'loc': ''}, {'category': 'Init', 'text': '0', 'key': -2,
'loc': ''},{'category': 'Circuit', 'text': 'Manual.Gates.Simon.QC_qSOA_Simon',␣

↪→'key': -3, 'loc': ''}, {'category': 'Repeat', 'text':
'1000', 'key': -4, 'loc': ''}, {'category': 'End', 'text': 'End', 'key': -5,
'loc': ''}], 'linkDataArray': [{'from': -1, 'to': -2, 'points': []}, {'from':
-2, 'to': -3, 'points': []}, {'from': -3, 'to': -4, 'points': []}, {'from': -4,
'to': -5, 'points': []}]}

2.3.2 Creating the flow

In order to create the flow we are using createAssetFlowSync, although the createAssetSync function
would also work. The inputs that this function requires are:

• idSolution: to associate the flow with the solution we have selected before.

© QuantumPath® 2022 | All rights reserved 8

https://www.quantumpath.es/

• assetName: to set the name of the flow.

• assetNamespace: to associate the flow with a class of flows that share something in common.
In this case, we associate the flow with a set of basic flows.

• assetDescription: to write a brief description of the algorithm.

• assetBody: to select the flow we have previously defined.

• assetLevel: to select either VL or IL, according to the definition of the flow.

• publish: to select if we want to publish the flow on qSOA® or not.

[7]: ## Flow creation
assetName = 'QF_qSOA_Simon'
assetNamespace = 'Manual.Gates.Simon'
assetDescription = 'Creating Simons flow from qSOA'
assetPublication = True

assetBody = flow
assetType = 'FLOW'
assetLevel = 'VL'

FlowManagementResult = qsoa.createAssetFlowSync(idSolution, assetName,
assetNamespace, assetDescription, assetBody, assetLevel,assetPublication)

Note: Note that the synchronous version of this function is being used. This is because the create-
AssetFlow function creates, compiles and transpiles the flow, and the synchronous function waits
for all of it to be done before moving on. For a better understanding of how this functions works,
we recommend using the asynchronous version, createAssetFlow, and the getAssetManagementRe-
sult function.

2.4 Implementation of the algorithm

2.4.1 Executing the algorithm

We are now ready to execute the algorithm, so lets see on what platforms we can do so, and select
the ones we are interested in.

[8]: deviceList = qsoa.getQuantumDeviceList(idSolution)
print('Device List:', deviceList)
DeviceID = input("Select a device to run the flow in: ")

Device List: {'14': 'AMAZON BRAKET 25qbits Local Simulator', '2': 'QISKIT Local
Simulator', '1': 'Q# Local Simulator Framework'}
Select a device to run the flow in: 14

Now, we proceed to run the quantum algorithm with the runQuantumApplicationSync function.

© QuantumPath® 2022 | All rights reserved 9

https://www.quantumpath.es/

[9]: exe_application = qsoa.runQuantumApplicationSync('NameTheTask', idSolution,␣
↪→FlowID, DeviceID)

Note: Note that the synchronous version of this function is being used. This is because runQuan-
tumApplication launches an execution, and the synchronous function waits for the execution to
be done before moving on. If we do not know how long the execution is going to take (due to
the execution itself or to the queue), or if it takes too long, the asynchronous version presents a
clear advantage. However, for a better understanding of how this functions work, we recommend
using the asynchronous version, runQuantumApplication.

The function runQuantumApplicationSync gives an application object as output. For us to man-
age the results we need the getQuantumExecutionResponse function that returns the results as an
execution object.

[10]: restok_execution = qsoa.getQuantumExecutionResponse(exe_application.
↪→getExecutionToken(), idSolution, FlowID)

restok_histogram = restok_execution.getHistogram()
print(restok_histogram)

{'QS_GateTutorials_12345_Manual_Gates_Simon_QC_qSOA_Simon_1_0': {'010011': 60,
'010010': 52, '101010': 53, '000011': 66, '111011': 67, '010000': 65, '000000':
58, '000010': 68, '101011': 61, '111010': 47, '010001': 57, '101000': 73,
'111001': 78, '101001': 67, '000001': 65, '111000': 63}}

Now that we have the results we asked for, we can proceed to represent them with the function
representResults.

[11]: # Circuit gate representation
gates_representation = qsoa.representResults(restok_execution)

© QuantumPath® 2022 | All rights reserved 10

https://www.quantumpath.es/

2.4.2 Multiple devices

If we want to run the algorithm in multiple devices at the same time we can do so by creating an
array with the information needed and proceeding the same way as before.

[12]: deviceList = qsoa.getQuantumDeviceList(idSolution)
print('Device List:', deviceList)

Device List: {'14': 'AMAZON BRAKET 25qbits Local Simulator', '2': 'QISKIT Local
Simulator', '1': 'Q# Local Simulator Framework'}

[13]: ## Run Quantum Gates Application
exe_ApplicationNames = ['Task_Amazonsim','Task_Qiskitsim']
exe_IdDevices = [14,2]

exe_Applications = [0] * len(exe_ApplicationNames)

for i in range(len(exe_ApplicationNames)):
exe_Applications[i] = qsoa.runQuantumApplicationSync(exe_ApplicationNames[i],
idSolution, FlowID, exe_IdDevices[i])

[14]: # Get quantum execution response with execution token
restok_Executions = [0] * len(exe_ApplicationNames)
restok_Histograms = [0] * len(exe_ApplicationNames)

for i in range(len(exe_ApplicationNames)):
restok_Executions[i] = qsoa.getQuantumExecutionResponse(exe_Applications[i].

↪→getExecutionToken(), idSolution, FlowID)
restok_Histograms[i] = restok_Executions[i].getHistogram()

print(restok_Histograms)

[{'QS_GateTutorials_12345_Manual_Gates_Simon_QC_qSOA_Simon_1_0': {'101011': 62,
'111011': 56, '111000': 60, '101001': 73, '111010': 64, '101000': 60, '010000':
67, '010011': 68, '010001': 61, '111001': 55, '010010': 65, '000010': 60,
'000001': 59, '000011': 69, '101010': 61, '000000': 60}},
{'QS_GateTutorials_12345_Manual_Gates_Simon_QC_qSOA_Simon_1_0': {'000000': 69,␣

↪→'010001': 63, '010011': 61, '000010': 48, '101011': 53, '111000': 61, '101001':␣
↪→66, '101010': 55, '000001': 75, '111011': 65, '010010': 65, '010000': 61,␣
↪→'111001': 70, '000011': 69, '101000': 66, '111010': 53}}]

[15]: # Circuit gate representation
for i in range(len(exe_ApplicationNames)):

Gates_Representations = qsoa.representResults(restok_Executions[i])

© QuantumPath® 2022 | All rights reserved 11

https://www.quantumpath.es/

We now proceed to analyze the results obtained in the simulation with just one device. It can be
done analogously with the rest and the results should be equivalent.

The results shown in the histogram are the following:

© QuantumPath® 2022 | All rights reserved 12

https://www.quantumpath.es/

Amazon Braket 25qbits Local Simulator
Results 1st Register Outcome
010011 010 60
010010 010 52
101010 101 53
000011 000 66
111011 111 67
010000 010 65
000000 000 58
000010 000 68
101011 101 61
111010 111 47
010001 010 57
101000 101 73
111001 111 78
101001 101 67
000001 000 65
111000 111 63

This means that the measurement of the first register can only be: {000, 010, 101, 111}.

Using these results we can figure out the value of s by solving the set of equations given by
s · z = 0 (mod2).

For example, the measurement 010 tells us:

s · 010 = 0
s0 · 0 + s1 · 1 + s2 · 0 = 0

���s0 · 0 + s1 · 1 +�
��s2 · 0 = 0
s1 = 0

From the 101 result we obtain the remaining parts:

s · 101 = 0
s0 · 1 + s1 · 0 + s2 · 1 = 0
s0 · 1 + 0 · 0 + s2 · 1 = 0

Either s0 = s2 = 0, trivial solution, or s0 = s2 = 1. Therefore, the searched value is s = 101.

We can also verify that the other two results satisfy the equation: s · z = 0 (mod2), as it is easy to
see that 101 · 000 = 0 (mod2), and 101 · 111 = 0 (mod2).

All being said, having figured out the value of the string s, we can corroborate that
f (x) = f (x ⊕ s):

© QuantumPath® 2022 | All rights reserved 13

https://www.quantumpath.es/

f (000) = f (000 ⊕ 101) = f (101)
f (001) = f (001 ⊕ 101) = f (100)
f (010) = f (010 ⊕ 101) = f (111)
f (011) = f (011 ⊕ 101) = f (110)

References

[1] aQuantum, QPath® Python SDK User Guide. Available on QPath®.

© QuantumPath® 2022 | All rights reserved 14

https://www.quantumpath.es/

	Simon's algorithm
	Previous concepts
	The problem
	Classical solution
	Quantum solution
	Usefulness of the algorithm

	Implementation of the algorithm in qSOA®
	Setting up qSOA®
	Securing the connection

	Assigning a circuit to the solution
	Defining the circuit
	Creating the circuit

	Assigning a circuit flow to the circuit
	Defining the flow
	Creating the flow

	Implementation of the algorithm
	Executing the algorithm
	Multiple devices

