
Implementation of the n-Queens
problem in qSOA®

© QuantumPath® 2022 | All rights reserved

https://www.quantumpath.es/

Contents

1 The n-Queens problem 2
1.1 The problem . 2
1.2 Construction of the Hamiltonian . 2

2 Implementation of the algorithm in qSOA® 4
2.1 Setting up qSOA® . 4

2.1.1 Securing the connection . 5
2.2 Assigning a circuit to the solution . 5

2.2.1 Defining the circuit . 5
2.2.2 Creating the circuit . 7

2.3 Assigning a circuit flow to the circuit . 8
2.3.1 Defining the flow . 8
2.3.2 Creating the flow . 9

2.4 Implementation of the algorithm . 10
2.4.1 Executing the algorithm . 10
2.4.2 Multiple devices . 11

© QuantumPath® 2022 | All rights reserved 1

https://www.quantumpath.es/

1 The n-Queens problem

1.1 The problem

Given n ∈ N, consider a chessboard of n rows and n columns (i.e., a board of n2 squares). The
n-queens problem consists of placing n queens on the board so that there are no pairs of queens
facing each other.

Figure 1: Problem with n = 4

We formulate the n-queens problem with four constraints:

1. There must be exactly one queen per column

2. There must be exactly one queen per row

3. A maximum of one queen per ascending diagonal (from left to right)

4. A maximum of one queen per downward diagonal (from left to right)

Let us see how to implement these constraints, and to do so, we first define the variables of the
problem. Given i, j ∈ {1, ..n}, we define: xi,j = 1 if there is a queen in the position (i, j)1, and
xi,j = 0 otherwise.

1.2 Construction of the Hamiltonian
The index i indicates the column of the cell represented by the variable xi,j. So, by fixing such
index and varying among the possible values of j, we go through all the cells of column i. Thus,
in order to have only one queen per columns we impose the constraint:

n

∑
i=1

(
n

∑
j=1

xi,j − 1

)2

1Where (i, j) corresponds to the cell in column i, and row j.

© QuantumPath® 2022 | All rights reserved 2

https://www.quantumpath.es/

Similarly, in order to have only one queen per row, we impose the constraint:

n

∑
j=1

(
n

∑
i=1

xi,j − 1

)2

On the other hand, requiring a maximum of one queen per diagonal means that it makes no
difference whether there is one or no queen on each diagonal. Let’s consider two different options
for constructing these constraints:

Note: Two boxes (i, j) and (k, l) belong to the same ascending diagonal if i − j = k − l, and belong
to the same descending diagonal if i + j = k + l.

Option 1: Given two squares (i, j) and (k, l) belonging to the same diagonal (either ascending or
descending), we write the constraint so that there is at most one queen in these squares as follows.
In order to have at most one queen in the ascending diagonals, we implement the constraint:

n−1

∑
i=1

n−1

∑
j=1

n−i+1

∑
k=j+1

xj,j+i−1xk,k+i−1 +
n−2

∑
i=1

n−1

∑
j=i+1

n

∑
k=j+1

xj,j−ixk,k−i (1)

And in the same way, so that there is at most one queen in the descending diagonals we implement
the constraint:

n−1

∑
i=1

i

∑
j=1

i+1

∑
k=j+1

xj,i+2−jxk,i+2−k +
n−2

∑
i=1

n−1

∑
j=n−i

n

∑
k=j+1

xj,2n−i−jxk,2n−i−k (2)

Option 2: Given a diagonal D, we can write the constraint so that there is at most one queen on D
as follows: ∑

(i,j)∈D
xi,j −

1
2

2

So if there is a queen on the diagonal, the sum will be 1, and if there is no queen, 0. However, in
both cases the energy that will come out of the constraint is (1/2)2 = 1/4.

Thus, in order to have at most one queen in the ascending diagonal, we write the constraint as:

n−1

∑
j=1

(
n−k

∑
i=1

xi,i+k −
1
2

)2

+
n

∑
k=1

(
n

∑
i=k

xi,i−k+1 −
1
2

)2

(3)

And in the same way, so that there is at most one queen in each descending diagonal, we write the
constraint in the following way:

n

∑
k=1

(
k

∑
i=1

xi,k−i+1 −
1
2

)2

+
n−1

∑
k=1

(
n

∑
i=k−1

xi,n+k+1−i −
1
2

)2

(4)

© QuantumPath® 2022 | All rights reserved 3

https://www.quantumpath.es/

Now, using the expressions (1) and (2) to write constraints 3 and 4, we can write the Hamiltonian
of the problem as:

H = λ1

n

∑
i=1

(
n

∑
j=1

xi,j − 1

)2

+ λ2

n

∑
j=1

(
n

∑
i=1

xi,j − 1

)2

+

λ3

(
n−1

∑
i=1

n−1

∑
j=1

n−i+1

∑
k=j+1

xj,j+i−1xk,k+i−1 +
n−2

∑
i=1

n−1

∑
j=i+1

n

∑
k=j+1

xj,j−ixk,k−i

)
+

λ4

(
n−1

∑
i=1

i

∑
j=1

i+1

∑
k=j+1

xj,i+2−jxk,i+2−k +
n−2

∑
i=1

n−1

∑
j=n−i

n

∑
k=j+1

xj,2n−i−jxk,2n−i−k

) (5)

Note: In option 1 the optimal solution has energy 0. However in option 2 the optimal solution has
energy

(
n − 1

2

)
.

2 Implementation of the algorithm in qSOA®

Once we are aware of how the algorithm works, we are ready to implement it in qSOA®. This will
allow us to create the circuit and execute it in different quantum computing providers, among
many other things.

The process of implementing an algorithm in qSOA® is comprised of four steps:

1. Setting up qSOA® and selecting the quantum solution

2. Creating a circuit with the algorithm and assigning it to the solution

3. Introducing a circuit flow to control the number of launches of the algorithm

4. Executing the flow on different quantum devices.

As can be seen in qSOA’s® manual, ref.[1], there are multiple ways to secure the connection de-
pending on the context. Following the best practices of qSOA®, in this tutorial we are integrating
the security in the code. Similarly, one can work with asynchronous or synchronous program-
ming. Keeping in mind the purpose of this tutorial we will use the synchronous version.

2.1 Setting up qSOA®

Firstly, we import the SDK that has been previously installed, see ref.[1], and create the qSOA®

workspace to work with.

[1]: from QuantumPathQSOAPySDK import QSOAPlatform # Import SDK

[2]: # Create qSOA workspace, login manually
qsoa = QSOAPlatform()

username = 'username'
password = 'password' # password encrypted in SHA-256

© QuantumPath® 2022 | All rights reserved 4

https://www.quantumpath.es/

authenticated = qsoa.authenticateEx(username, password)

print('Authentication completed:', authenticated)

Authentication completed: True

Then we review the existing solutions and select the one we are interested in.

[3]: # Get catalogs
solutionList = qsoa.getQuantumSolutionList()
print(" ",solutionList)
idSolution = int(input("Select idSolution: "))

{'12345': 'QS_AnnealingTutorials'}
Select idSolution: 12345

2.1.1 Securing the connection

As has been said, qSOA® allows multiple business development contexts. Therefore, the user
can secure the connection through a configuration file, .qpath, useful at a personal level, or in
parameterized way, as it is done here.

2.2 Assigning a circuit to the solution
Once the solution has been selected, we must link it to the circuit that we are interested in imple-
menting. Therefore, we first need to define the circuit and create it.

2.2.1 Defining the circuit

As we are working with an annealing circuit, we can either enter the circuit in visual language, VL,
or intermediate language, IL. Either way the circuit has to be entered as a String, as shown below.

To establish our circuit we can define the following assets:

1. Parameters: we will define every scalar in our problem as a parameter

2. Auxiliary data: the rest of our parameters that aren’t scalar will be defined here

3. Classes: elements that form the variables

4. Variables

5. Rules

In our case, the only parameter of the problem is the dimension of the board, n. Thus, we enter
the value of n as a Parameter and leave out the Auxiliary data section.

Once this is done, we define the classes and variables. In this problem our variables are going to
be xi,j, that depend on the column and row they occupy, so we need to add those two as classes.

© QuantumPath® 2022 | All rights reserved 5

https://www.quantumpath.es/

When this is done we implement the rules that we have talked about before. The rules are intro-
duced as follows:

RULE(Name of the rule| "Description of the rule"| "Value of lambda"| {Mathematical expression});

and every mathematical expression in a rule can be defined with the following commands:

1. SUMMATORY(from where to where| What wants to be summed)

2. SQUARED(What wants to be squared)

3. LINEAR(Variable|"Product")

4. OFFSET("Value")

5. QUADRATIC(Variable1| Variable2|"Product")

[4]: # Defining the body w/ annealing
AnnBody = '''
PARAM(n|4);
CLASS(rows|n|"");
CLASS(columns|n|"");
VARIABLE(x|{rows,columns}|"");
RULE(Rule1|"One queen per column"|"1"|{

SUMMATORY(from 1 to n iterate i|{
SQUARED({

SUMMATORY(from 1 to n iterate j|{
LINEAR(x[i,j]| "1")

})
,OFFSET("(-1)")

})
})

});
RULE(Rule2|"One queen per row"|"1"|{

SUMMATORY(from 1 to n iterate j|{
SQUARED({

SUMMATORY(from 1 to n iterate i|{
LINEAR(x[i,j]| "1")

})
,OFFSET("(-1)")

})
})

});
RULE(Rule3|"At most one queen in ascending diagonal"|"2"|{

SUMMATORY(from 1 to n-1 iterate i|{
SUMMATORY(from 1 to n-i iterate j|{

SUMMATORY(from j+1 to n-i+1 iterate k|{
QUADRATIC(x[j,j+i-1]|x[k,k+i-1]|"1")

})

© QuantumPath® 2022 | All rights reserved 6

https://www.quantumpath.es/

})
})
,SUMMATORY(from 1 to n-2 iterate i|{

SUMMATORY(from i+1 to n-1 iterate j|{
SUMMATORY(from j+1 to n iterate k|{

QUADRATIC(x[j,j-i]|x[k,k-i]|"1")
})

})
})

});
RULE(Rule4|"At most one queen in descending diagonal"|"2"|{

SUMMATORY(from 1 to n-1 iterate i|{
SUMMATORY(from 1 to i iterate j|{

SUMMATORY(from j+1 to i+1 iterate k|{
QUADRATIC(x[j,i+2-j]|x[k,i+2-k]|"1")

})
})

})
,SUMMATORY(from 1 to n-2 iterate i|{

SUMMATORY(from n-i to n-1 iterate j|{
SUMMATORY(from j+1 to n iterate k|{

QUADRATIC(x[j,2*n-i-j]|x[k,2*n-i-k]|"1")
})

})
})

});
'''

2.2.2 Creating the circuit

In order to create the circuit we are going to use the createAssetSync function. This function receives
the following fields as inputs:

• idSolution: to associate the circuit with the solution we have selected before.

• assetName: to set the name of the circuit.

• assetNamespace: to associate the circuit with a class of circuits that share something in com-
mon. In this case, we associate the circuit with a set of basic circuits.

• assetDescription: to write a brief description of the algorithm.

• assetBody: to select the circuit we have previously defined.

• assetType: to select if we are working with a gates circuit or an annealing one.

• assetLevel: to select either visual language or intermediate language, according to the defi-
nition of the circuit.

© QuantumPath® 2022 | All rights reserved 7

https://www.quantumpath.es/

[5]: ## Circuit creation
assetName = 'QC_qSOA_nQueens'
assetNamespace = 'Manual.Annealing.nQueens'
assetDescription = 'Creating the annealing circuit from qSOA'

assetBody = AnnBody
assetType = 'ANNEAL'
assetLevel = 'IL'

CircuitManagementData = qsoa.createAsset(idSolution, assetName,
assetNamespace, assetDescription, assetBody, assetType, assetLevel)

Note: Note that the synchronous version of this function is being used. This is because the create-
Asset function creates, compiles and transpiles the asset, and the synchronous function waits for
all of it to be done before moving on. For a better understanding of how this functions works,
we recommend using the asynchronous version, createAsset, and the getAssetManagementResult
function.

2.3 Assigning a circuit flow to the circuit
The quantum flow is a box diagram that will allow us to control the number of runs of our al-
gorithm. This is very useful, as the results in quantum computing have a certain probability
associated with them. That means that the more times we run the algorithm, the more robust the
results will be.

2.3.1 Defining the flow

The flow can be written in VL or IL. If we choose to do it with VL then it can be entered as a String
or a CircuitFlow object. Otherwise, it can only be entered as a String. For this example we are
choosing VL and CircuitFlow.

In order to define a flow we need:

1. Starting node

2. Initializing node: usually set to 0

3. Circuit node: where we write the circuit we want lo launch

4. Repeat node: where the number of repetitions can be establish

5. End node

6. Links between each node we have created

[8]: # Defining flow w/ CircuitFlow
flow = qsoa.CircuitFlow()
startNode = flow.startNode()
initNode = flow.initNode(0)

© QuantumPath® 2022 | All rights reserved 8

https://www.quantumpath.es/

circuitNode = flow.circuitNode('Manual.Annealing.nQueens.QC_qSOA_nQueens')
Namespace + CircuitName
repeatNode = flow.repeatNode(1000)
endNode = flow.endNode()

flow.linkNodes(startNode, initNode)
flow.linkNodes(initNode, circuitNode)
flow.linkNodes(circuitNode, repeatNode)
flow.linkNodes(repeatNode, endNode)
print(flow.getFlowBody())

[8]: {'class': 'go.GraphLinksModel', 'nodeDataArray': [{'category': 'Start', 'text':
'Start', 'key': -1, 'loc': ''}, {'category': 'Init', 'text': '0', 'key': -2,
'loc': ''},{'category': 'Circuit', 'text': 'Manual.Annealing.nQueens.

↪→QC_qSOA_nQueens', 'key': -3, 'loc': ''}, {'category': 'Repeat', 'text':
'1000', 'key': -4, 'loc': ''}, {'category': 'End', 'text': 'End', 'key': -5,
'loc': ''}], 'linkDataArray': [{'from': -1, 'to': -2, 'points': []}, {'from':
-2, 'to': -3, 'points': []}, {'from': -3, 'to': -4, 'points': []}, {'from': -4,
'to': -5, 'points': []}]}

2.3.2 Creating the flow

In order to create the flow we are using createAssetFlowSync, although the createAssetSync function
would also work. The inputs that this function requires are:

• idSolution: to associate the flow with the solution we have selected before.

• assetName: to set the name of the flow.

• assetNamespace: to associate the flow with a class of flows that share something in common.
In this case, we associate the flow with a set of basic flows.

• assetDescription: to write a brief description of the algorithm.

• assetBody: to select the flow we have previously defined.

• assetLevel: to select either VL or IL, according to the definition of the flow.

• publish: to select if we want to publish the flow on qSOA® or not.

[9]: ## Flow creation
assetName = 'QF_qSOA_nQueens'
assetNamespace = 'Manual.Annealing.nQueens'
assetDescription = 'Creating the teleportation flow from qSOA'
assetPublication = True

assetBody = flow
assetType = 'FLOW'
assetLevel = 'VL'

© QuantumPath® 2022 | All rights reserved 9

https://www.quantumpath.es/

FlowManagementResult = qsoa.createAssetFlowSync(idSolution, assetName,
assetNamespace, assetDescription, assetBody, assetLevel,assetPublication)

Note: Note that the synchronous version of this function is being used. This is because the create-
AssetFlow function creates, compiles and transpiles the flow, and the synchronous function waits
for all of it to be done before moving on. For a better understanding of how this functions works,
we recommend using the asynchronous version, createAssetFlow, and the getAssetManagementRe-
sult function.

2.4 Implementation of the algorithm

2.4.1 Executing the algorithm

We are now ready to execute the algorithm, so lets see on what platforms we can do so, and select
the ones we are interested in.

[12]: deviceList = qsoa.getQuantumDeviceList(idSolution)
print('Device List:', deviceList)
DeviceID = input("Select a device to run the flow in: ")

Device List: {'13': 'AMAZON BRAKET Local ExactSolver', '7': 'DWAVE OCEAN Local
Simulator'}
Select a device to run the flow in: 13

Now, we proceed to run the quantum algorithm with the runQuantumApplicationSync function.

[13]: exe_application = qsoa.runQuantumApplicationSync('NameTheTask', idSolution,␣
↪→FlowID, DeviceID)

Note: Note that the synchronous version of this function is being used. This is because runQuan-
tumApplication launches an execution, and the synchronous function waits for the execution to
be done before moving on. If we do not know how long the execution is going to take (due to
the execution itself or to the queue), or if it takes too long, the asynchronous version presents a
clear advantage. However, for a better understanding of how this functions work, we recommend
using the asynchronous version, runQuantumApplication.

The function runQuantumApplicationSync gives an application object as output. For us to man-
age the results we need the getQuantumExecutionResponse function that returns the results as an
execution object.

[14]: restok_execution = qsoa.getQuantumExecutionResponse(exe_application.
↪→getExecutionToken(), idSolution, FlowID)

restok_histogram = restok_execution.getHistogram()
print(restok_histogram)

© QuantumPath® 2022 | All rights reserved 10

https://www.quantumpath.es/

{'QS_AnnealingTutorials_12345_Manual_Annealing_nQueens_QC_qSOA_nQueens_1_0':
{'number_of_samples': '65536', 'number_of_variables': '16', 'sample_energy':
'0.0', 'sample_occurence': '1', 'fullsample': {'x[1,1]': '0', 'x[1,2]': '0',
'x[1,3]': '1', 'x[1,4]': '0', 'x[2,1]': '1', 'x[2,2]': '0', 'x[2,3]': '0',
'x[2,4]': '0', 'x[3,1]': '0', 'x[3,2]': '0', 'x[3,3]': '0', 'x[3,4]': '1',
'x[4,1]': '0', 'x[4,2]': '1', 'x[4,3]': '0', 'x[4,4]': '0'}}}

Now that we have the results we asked for, we can proceed to represent them with the function
representResults.

[15]: # Circuit gate representation
gates_representation = qsoa.representResults(restok_execution)
print(gates_representation)

QS_AnnealingTutorials_12345_Manual_Annealing_nQueens_QC_qSOA_nQueens_1_0
+-------------------+---------------------+---------------+------------------+
| number_of_samples | number_of_variables | sample_energy | sample_occurence |
+-------------------+---------------------+---------------+------------------+
| 65536 | 16 | 0.0 | 1 |
+-------------------+---------------------+---------------+------------------+
+--------+-------+
| Name | Value |
+--------+-------+
x[1,1]	0
x[1,2]	0
x[1,3]	1
x[1,4]	0
x[2,1]	1
x[2,2]	0
x[2,3]	0
x[2,4]	0
x[3,1]	0
x[3,2]	0
x[3,3]	0
x[3,4]	1
x[4,1]	0
x[4,2]	1
x[4,3]	0
x[4,4]	0
+--------+-------+

2.4.2 Multiple devices

If we want to run the algorithm in multiple devices at the same time, we can do so by creating an
array with the information needed and proceeding the same way as before.

© QuantumPath® 2022 | All rights reserved 11

https://www.quantumpath.es/

[16]: deviceList = qsoa.getQuantumDeviceList(idSolution)
print('Device List:', deviceList)

Device List: {'13': 'AMAZON BRAKET Local ExactSolver', '7': 'DWAVE OCEAN Local
Simulator'}

[17]: ## Run Quantum Gates Application
exe_ApplicationNames = ['Task_Amazon','Task_DWave']
exe_IdDevices = [13,7]

exe_Applications = [0] * len(exe_ApplicationNames)

for i in range(len(exe_ApplicationNames)):
exe_Applications[i] = qsoa.runQuantumApplicationSync(exe_ApplicationNames[i],

idSolution, FlowID, exe_IdDevices[i])

[18]: # Get quantum execution response with execution token
restok_Executions = [0] * len(exe_ApplicationNames)
restok_Histograms = [0] * len(exe_ApplicationNames)

for i in range(len(exe_ApplicationNames)):
restok_Executions[i] = qsoa.getQuantumExecutionResponse(exe_Applications[i].

↪→getExecutionToken(), idSolution, FlowID)
restok_Histograms[i] = restok_Executions[i].getHistogram()

print(restok_Histograms)

[{'QS_AnnealingTutorials_12345_Manual_Annealing_nQueens_QC_qSOA_nQueens_1_0':
{'number_of_samples': '65536', 'number_of_variables': '16', 'sample_energy':
'0.0', 'sample_occurence': '1', 'fullsample': {'x[1,1]': '0', 'x[1,2]': '0',
'x[1,3]': '1', 'x[1,4]': '0', 'x[2,1]': '1', 'x[2,2]': '0', 'x[2,3]': '0',
'x[2,4]': '0', 'x[3,1]': '0', 'x[3,2]': '0', 'x[3,3]': '0', 'x[3,4]': '1',
'x[4,1]': '0', 'x[4,2]': '1', 'x[4,3]': '0', 'x[4,4]': '0'}}},
{'QS_AnnealingTutorials_12345_Manual_Annealing_nQueens_QC_qSOA_nQueens_1_0':
{'number_of_samples': '65536', 'number_of_variables': '16', 'sample_energy':
'0.0', 'sample_occurence': '1', 'fullsample': {'x[1,1]': '0', 'x[1,2]': '0',
'x[1,3]': '1', 'x[1,4]': '0', 'x[2,1]': '1', 'x[2,2]': '0', 'x[2,3]': '0',
'x[2,4]': '0', 'x[3,1]': '0', 'x[3,2]': '0', 'x[3,3]': '0', 'x[3,4]': '1',
'x[4,1]': '0', 'x[4,2]': '1', 'x[4,3]': '0', 'x[4,4]': '0'}}}]

[19]: # Circuit annealing representation
for i in range(len(exe_ApplicationNames)):

Gates_Representations = qsoa.representResults(restok_Executions[i])
print(Gates_Representations)

© QuantumPath® 2022 | All rights reserved 12

https://www.quantumpath.es/

QS_AnnealingTutorials_12345_Manual_Annealing_nQueens_QC_qSOA_nQueens_1_0
+-------------------+---------------------+---------------+------------------+
| number_of_samples | number_of_variables | sample_energy | sample_occurence |
+-------------------+---------------------+---------------+------------------+
| 65536 | 16 | 0.0 | 1 |
+-------------------+---------------------+---------------+------------------+
+--------+-------+
| Name | Value |
+--------+-------+
x[1,1]	0
x[1,2]	0
x[1,3]	1
x[1,4]	0
x[2,1]	1
x[2,2]	0
x[2,3]	0
x[2,4]	0
x[3,1]	0
x[3,2]	0
x[3,3]	0
x[3,4]	1
x[4,1]	0
x[4,2]	1
x[4,3]	0
x[4,4]	0
+--------+-------+

QS_AnnealingTutorials_12345_Manual_Annealing_nQueens_QC_qSOA_nQueens_1_0
+-------------------+---------------------+---------------+------------------+
| number_of_samples | number_of_variables | sample_energy | sample_occurence |
+-------------------+---------------------+---------------+------------------+
| 65536 | 16 | 0.0 | 1 |
+-------------------+---------------------+---------------+------------------+
+--------+-------+
| Name | Value |
+--------+-------+
x[1,1]	0
x[1,2]	0
x[1,3]	1
x[1,4]	0
x[2,1]	1
x[2,2]	0
x[2,3]	0
x[2,4]	0

© QuantumPath® 2022 | All rights reserved 13

https://www.quantumpath.es/

x[3,1]	0
x[3,2]	0
x[3,3]	0
x[3,4]	1
x[4,1]	0
x[4,2]	1
x[4,3]	0
x[4,4]	0
+--------+-------+

Given the results, it is easy to see that optimized solution consists of placing the 4-queens in the
cells (1,3), (2,1), (3,4), (4,2), just as figure 1 shows.

References

[1] aQuantum, QPath® Python SDK User Guide. Available on QPath®.

© QuantumPath® 2022 | All rights reserved 14

https://www.quantumpath.es/

	The n-Queens problem
	The problem
	Construction of the Hamiltonian

	Implementation of the algorithm in qSOA®
	Setting up qSOA®
	Securing the connection

	Assigning a circuit to the solution
	Defining the circuit
	Creating the circuit

	Assigning a circuit flow to the circuit
	Defining the flow
	Creating the flow

	Implementation of the algorithm
	Executing the algorithm
	Multiple devices

